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OBJECTIVES

To carry out fundamental and wide ranging research investigations involving the nonlinear

wave propagation which arise in physically significant systems with emphasis on nonlinear

optics. The modeling and computational studies of wave phenomena in nonlinear optics

include ultrashort pulse dynamics in mode-locked lasers, dynamics and perturbations of

dark solitons, nonlinear wave propagation in photonic lattices, investigations of dispersive

shock waves.

STATUS OF EFFORT

The PI’s research program in nonlinear wave propagation is broad based and very active.

There have been a number of important research contributions carried out as part of the

effort funded by the Air Force. During the period 1 March 2009 – 30 November 2011, fourteen

papers were published in refereed journals,. In addition, one refereed book and one refereed

conference proceeding were published, and thirty one invited lectures were given. The key

results and research directions are described below in the section on accomplishments/new

findings. Full details can be found in our research papers which are listed at the end of this

report.
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Research investigations carried out by the PI and colleagues included the following. The

underlying modes, dynamics and properties of mode-locked lasers which are used to create

ultrashort pulses were analyzed. Titanium:sapphire (Ti:sapphire or Ti:s) lasers are often

used to produce ultrashort pulses on the order of a few femtoseconds. There are other

mode-locked lasers which produce ultrashort pulses, such as Sr-Forsterite, fiber lasers, and

Chromium-doped lasers. Ti:s lasers are known to have outstanding characteristics. These

mode-locked lasers can be used to generate a regularly spaced train of ultrashort pulses

separated by one cavity round-trip time. A typical mode-locked laser system consists of a

Ti:sapphire crystal which exhibits a nonlinear Kerr response and has a large normal group-

velocity dispersion (GVD). This requires a set of prisms and/or mirrors specially designed

to have large anomalous GVD in order to compensate for the normal GVD of the crystal.

Experiments conducted at the University of Colorado with the mathematical foundation

provided by our group, demonstrated that such lasers can be approximated by dispersion-

managed systems and the intra-cavity pulse was found to be described by a dispersion-

managed soliton.

Improved mathematical models of these mode-locked lasers containing gain and loss

mechanisms were developed; these models contain gain and filtering terms saturated by

energy and a loss term saturated by power. The new models describes the mode-locking

and dynamics of localized nonlinear waves with/without dispersion management in both

anomalous and normal regimes. Single and multi-soliton trains were obtained and analyzed.

Early experimental observation of one-dimensional nonlinear lattice modes in optical

waveguide arrays demonstrated that at sufficiently high power, a laser beam could be self-

trapped inside the waveguide. This demonstrated the formation of a lattice or discrete

soliton. Importantly, such waveguides can be constructed on extremely small scales and

they have been constructed by all-optical means. In turn, such nonlinear waves in waveguide

arrays have attracted special attention due to their realizability.
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Lattice nonlinear Schrödinger equations provide excellent models of photonic lattices. In-

vestigations of the associated pulse propagation with special emphasis on lattices with back-

ground honeycomb structure was carried out. In the strong potential (i.e. strong background

lattice) limit, sometimes called the tight binding limit, novel nonlinear discrete systems are

obtained in a regime near special points, called Dirac points, associated with the underlying

dispersion relation. In the continuous limit nonlinear Dirac systems are obtained. When the

background lattice is weak a different types of Dirac systems are found.

We developed asymptotic and computational methods which describe perturbations to

dark solitons in nonlinear Schrödinger type systems under perturbation. A fundamental

feature that arises is the appearance of a shelf due which arises to the perturbation. The

shelf is small but long in extent. Different perturbations can lead to prominent of relatively

weak shelves. In ring dark soliton mode-locked laser systems the shelf can lead to substantial

effects.

Dispersive shock waves (DSW’s) were also investigated. Motivated by experiments at the

University of Colorado, dispersive shock “blast” waves and interactions were studied. The

relevant analytical approximations and theory for DSW’s were developed and results were

compared with experiment and computation. DSW’s arise in nonlinear optics and many

other areas of physics. Interactions of DSW’s are not yet well understood; this is a topic of

our current research.
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ACCOMPLISHMENTS/NEW FINDINGS

Dynamics of ultra-short laser pulses and frequency combs

Research developments with mode-locked lasers, such as Ti:sapphire lasers, have enabled

scientists to generate regularly spaced trains of ultrashort pulses, which are separated by one

cavity round-trip time. Fig. 1 below shows a schematic of a mode-locked Ti:sapphire laser

and the emitted pulse train. Typical values for a Ti:sapphire mode-locked laser are pulse

width: τ = 10 fs = 10−14 sec and repetition time: Trep = 10 ns = 10−8 sec.

pulse train

prism pair

pump 

2mm

Ti:Sapphire crystal

repT

t

τ

pulse train

Figure 1: Ti:sapphire laser (left) and the emitted pulse train (right).

Associated with the spectrum, or the Fourier transform of the pulse train is a frequency

comb, whose frequencies are separated by the laser’s repetition frequency frep = 1
Trep

=

100 MHz. Progress in the development of optical oscillators has been made possible by

controlling these femtosecond frequency combs. Extremely stable frequency combs have been

generated by Ti:s laser systems, but other types of mode-locked lasers such as Sr:Forsterite

and fiber lasers are also being studied intensively. We have been working with faculty in the

Department of Physics at the University of Colorado who are leaders in this research effort.

It is important to have useful mathematical models of these laser systems.

In our research we have been studying a distributed dispersion-managed equation which

we term the power energy saturation (PES) model. For a pulse amplitude u(z, t), power
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P (z, t) = |u|2, and energy E(z) =
∫ +∞
−∞ |u|

2 dt, propagating in the z direction, the normalized

or dimensionless equation we study takes the form

i
∂u

∂z
+
d(z)

2

∂2u

∂t2
+ n(z)|u|2u =

ig

1 + E/Esat

u+
iτ

1 + E/Esat

utt −
il

1 + P/Psat

u (1)

where the constant parameters g, τ , l, Esat, Psat are positive. The first term on the right

hand side represents saturable gain, the second is nonlinear filtering (τ 6= 0) and the third

is saturable loss. This model generalizes the well-known master laser equation originally

developed by Haus and collaborators. When the loss term is approximated in the weakly-

nonlinear regime by a first order Taylor polynomial we obtain the master laser equation.

Hence, the master laser equation is included in the power saturated model as a first order

approximation.

In our papers we discuss in detail how to get the above dimensionless system from the

original dimensional variables. Briefly, the relationship between variables is given by

z′ = z/z∗, t
′ = t/t∗, u = E/

√
P∗

where E is the envelope of the electromagnetic field t∗, P∗ are the characteristic time (pro-

portional to pulse width) and power respectively. We take z∗ = 1/(P∗γ0), where γ0 (in units

1/MW-mm) is the nonlinear coefficient in the laser crystal, g, τ and l are scaled by z∗ and

the normalized dispersion is given by d(z) = −k′′(z)/k′′∗ , k′′∗ = t2∗/z∗, where k′′ is the GVD

(in units fs2/mm). In normalized units we find

d(z) = 〈d〉+
∆(z)

lc
,

with 〈d〉 being the average dispersion (net GVD), ∆ the deviation from the average GVD,

and lc the normalized laser-design map length. Usually one considers a two step dispersion

map where ∆j, j = 1, 2 are taken to be constant in the mirror+prism components (j = 1)

and crystal (j = 2). The map length over which the anomalous dispersion occurs is θlc where
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0 < θ < 1; typically we take θ = 1/2 in Ti:sapphire laser applications. It is convenient to

introduce a measure of map strength via the parameter s, which is proportional to the area

under the dispersion map, s = 1
4
[θ∆1 − (1− θ) ∆2]. In addition to dispersion-management,

we also have nonlinear-management in this laser model . Here nonlinear-management means

that n = 1 (transformed from γ0 in dimensional variables) inside the Ti:sapphire crystal

and n = 0 outside the crystal; that is, we assume linear propagation inside the prisms and

mirrors.

In our earlier research investigations in fiber optics we derived, based on the asymptotic

procedure of multiple scales, a nonlinear integro-differential equation (not given here due

to space considerations) which governs the dynamics of dispersion-managed pulse propaga-

tion. This governing equation is referred to as the dispersion-managed nonlinear Schrödinger

(DMNLS) equation. When there is no gain or loss in the system, for strongly dispersion-

managed systems, the DMNLS equation plays the role of the “pure” NLS equation–which

is the relevant averaged equation when there is either small or no dispersion-management.

When gain and loss are included as in the PES equation we have a modification of the “pure”

DMNLS equation.

With or without dispersion-management the PES equation naturally describes the locking

and evolution of pulses in mode-locked lasers that are operating in the soliton regime. In our

papers typical values of the parameters are chosen, and we vary the gain parameter g and the

map strength s. When g < g∗(s) no localized solution is obtained; i.e. in this case the effect

of loss is stronger than a critical gain value and the evolution of a Gaussian profile decays

to the trivial solution. Conversely, when g > g∗(s), there exists a single localized solution,

u = U0(t) exp(iµz) where µ, called the propagation constant, is uniquely determined given

the specific values of the other parameters.

A typical situation is described by the evolution of the pulse peak for different values of

the gain parameter g as shown in Fig. 2; here we keep all terms constant and only change
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the gain parameter g. When g = 0.1 the pulse vanishes quickly due to excessive loss with
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Figure 2: Evolution of the pulse peak of an arbitrary initial profile under PES with different

values of gain. The damped pulse-peak evolution is shown with a dashed line. In the right

hand figure, the complete evolution is given for g = 0.3.

no noticeable oscillatory behavior; the pulse simply decays, resulting in damped evolution.

When g = 0.2, 0.3, due to the loss in the system the pulse initially undergoes a relative

to its amplitude a modest decrease. However, it recovers and evolves into stable solution.

Interestingly, e.g. when g = 0.7, 1, and the perturbations are not small, a stable evolution

is nevertheless again obtained, although somewhat different from the case above. Now with

excessive gain in the system, the pulse amplitude increases develops oscillations but a steady

state is rapidly reached.

Generally speaking in the PES model, the mode-locking effect is present for g ≥ g∗, a

critical gain value. Without enough gain i.e. g < g∗, pulses dissipate to the trivial zero

state. Furthermore,we do not find complex radiation states or states whose amplitudes grow

without bound for parameter regimes we studied. In terms of solutions, Eq. (1) admits

soliton states for all values of g ≥ g∗ > l (recall, here l = 0.1). This was also shown to be

the case when we employed analytical methods (soliton perturbation theory).

As the gain parameter increases so does the amplitude and the pulse becomes narrower.

The energy and the amplitude of the pulse increases with g. In fact, the energy changes
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according to E ∼ √µ. Indeed, from soliton theory of the classical NLS equation this is exactly

the way a classical soliton’s energy changes. The key difference being that in the pure NLS a

semi-infinite set of µ exists, whereas now µ is unique for the given set of parameters. Hence

one expects that the solutions of the two equations, PES and NLS, are comparable. In Fig.

3 we plot the two solutions for different values of g. In each case the same value of µ is used.

The amplitudes match so closely that they are indistinguishable in the figure, meaning the
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Figure 3: Solitons of the perturbed and unperturbed equations.

perturbing effect is strictly the mode-locking mechanism, i.e. its effect is to mode-lock to

a soliton of the pure NLS with the appropriate propagation constant. The solitons of the

unperturbed NLS system are well known in closed analytical form, i.e. they are expressed

in terms of the hyperbolic secant function, ψ =
√

2µ sech(
√

2µ t) exp(−iµz), and therefore

describe solitons of the PES to a good approximation.

It is useful to note that only for a narrow range of parameters does the master laser

equation (when the loss term is taken to be the first two terms of the Taylor expansion

of the last, power saturated term, in the PES equation) have stable soliton solutions or

mode-locking evolution. In general the solitons are found to be unstable; either dispersing

to radiation or evolving into nonlocalized quasi-periodic states. For different parameters,

the amplitude can also grow rapidly under evolution. Thus, the basic master laser equation
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captures some qualitative aspects of pulse propagation in a laser cavity; however, since there

is only a small range of the parameter space for which stable mode-locked soliton pulses

exist, it does not reflect the wide ranges of operating conditions where mode-locking occurs.

Interestingly, as the gain becomes stronger additional soliton states are possible and 2, 3,

4 or more coupled pulses are found to be supported. This means that strings of soliton states

can be obtained. The value of ∆ξ/α, where ∆ξ and α are the pulse separation and pulse

width respectively, is a useful parameter. The full width of half maximum (FWHM) for pulse

width is used. ∆ξ, is measured between peak values of two neighboring pulses and ∆φ is

the phase difference between the peak amplitudes. Using typical parameters, with sufficient

gain (g = 0.5) Eq. (1) is evolved starting from unit gaussians with initial peak separation

∆ξ = 10 and ∆ξ/α = 8.5. The evolution and final state are depicted in Fig. 4. For the final
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Figure 4: Typical mode-locking evolution (left) for an in phase two soliton state of the

anomalously dispersive PES equation and the resulting soliton profile (right) at z = 300.

state we find ∆ξ/α ≈ 10. As in the single soliton mode-locking case the individual pulses

are approximately solutions of the unperturbed NLS equation, namely hyperbolic secants.

The pulses differ from a single soliton in that the individual pulse energy is smaller then that

observed for the single soliton mode-locking case for the same choice of g, while the total

energy of the two soliton state is higher.

In our papers we also investigate the minimum distance, d∗, between the solitons in order
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for no interactions to occur over a prescribed distance. We evolve the PES equation starting

with two solitons. If the initial two pulses are sufficiently far apart then the propagation

evolves to a two soliton state and the resulting pulses have a constant phase difference. If

the distance between them is less than a critical value then the two pulses interact in a way

characterized by the difference in phase between the peaks amplitudes: ∆φ. When initial

conditions are symmetric (in phase) two pulses are found to merge into a single soliton of

Eq. (1). When the initial conditions are anti-symmetric (out of phase by π) then they repel

each other until their separation is above this critical distance while retaining the difference

in phase, resulting in an effective two pulse high-order soliton state. This does not occur in

the pure NLS equation.
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Figure 5: Two pulse interaction when ∆ξ < d∗. Initial pulses (z = 0) in phase: ∆φ = 0,

∆ξ/α ≈ 7 (top) merge while those out of phase by ∆φ = π with ∆ξ/α ≈ 6 (bottom) repel.

In the constant dispersion case the critical distance w=for which there is no interaction

in a distance z < z∗ is found to be ∆ξ = d∗ ≈ 9α (see Fig. 4). Interestingly, we remark

that this is consistent with the experimental observations. To further illustrate, we plot the

evolution of these cases in Fig. 5. At z = 500 for the repelling solitons ∆ξ/α = 8.9.

Power saturation models also arise in other problems in nonlinear optics and are central in

the underlying theory. For example, power saturation models are important in the study of

the dynamics of localized lattice modes (solitons, vortices, etc) propagating in photorefractive
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nonlinear crystals. If the nonlinear term in these equations was simply a cubic nonlinearity,

without saturation, two dimensional fundamental lattice solitons would be vulnerable to

blow up singularity formation, which is not observed. Thus saturable terms are crucial in

these problems.
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Nonlinear Optics in Waveguide arrays and photonic lattices

Nonlinear light wave propagation in photonic lattices, or periodic optical waveguides,

is an active and interesting area of research. This is due, in part, to the realization that

photonic lattices can be constructed on extremely small scales, typically a few microns in

size. They allow the possibility of manipulation and navigation of lightwaves in small regions.

Localized nonlinear optical pulses which occur on one and two dimensional backgrounds have

been investigated. These backgrounds can be either fabricated mechanically such as those

comprised of AlGaAs materials or all-optically using photo-refractive materials where the

photonic structures are constructed via interference of two or more plane waves.

An important dimensionless equation that governs the light propagation in nonlinear

inhomogeneous dielectric media is the normalized lattice NLS equation

iψz +∇2ψ − V (r)ψ + σ|ψ|2ψ = 0. (2)

Here V (r) is an optical potential which describes the transversely varying refractive index;

σ is a constant which is positive for focusing nonlinearity and negative for defocusing non-

linearity. The potentials are often periodic, though defects and more complicated potentials

have also been studied. In photorefractive crystals, a useful modified model is the normalized

saturable lattice NLS equation

iψz +∇2ψ − E0ψ

1 + V (r) + σ|ψ|2ψ
= 0 (3)

where E0 is corresponds to the applied dc field and σ ≥ 0 is the nonlinear coefficient.

Important features of such systems include the existence of multiple frequency gaps of

the linear spectra and gap solitons can be obtained in these dispersion band gaps. The linear

problem is governed by the classical Schrödinger equation with a potential. If the potential

is periodic, this equation and the associated Bloch theory have been well studied in the solid

state physics literature. Generally speaking, the above lattice equations omitting nonlinear

terms have solutions propagating along z direction, i.e., ψ(r, z) = e−iµzϕ(r), where ϕ(r) is
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the Bloch mode which satisfies

µϕ+∇2ϕ− V (r)ϕ = 0. (4)

Due to the periodicity of V (r), the Bloch mode ϕ(r) has the form ϕ(r;k) = eik·rU(r;k)

where U(r) has the same periodicity as the potential V (r); k is the transverse wave vector

and the dispersion surface µ(k) is periodically dependent on the parameter k and forms

what is referred to as the reciprocal lattice. The unit cell of the reciprocal lattice is called

the Brillouin zone and the dispersion surface µ(k) is defined only in the Brillouin zone. A

light beam under propagation is usually a collection of envelopes of the Block modes. So it

is important to understand the evolution of such Block mode envelopes.

Periodic structures which have been widely studied are arrays of coupled nonlinear optical

waveguides and periodic rectangular lattices. These systems exhibit localized soliton and

dipole, multipole modes. In our research papers we find and discuss different phenomena.

Theoretically speaking, all 1-D periodic lattices are essentially the same. However, there

can be significant differences between 2-D periodic lattices. A special kind of lattice is the

honeycomb (HC) lattice. The local minima of the potentials, called sites, have the index of

refraction as maxima and the electric fields are attracted to the sites. The site distribution

determines the properties of the lattices. In the HC lattice, there are two sites in one unit cell.

The associated dispersion relations have a special property: the first and the second bands

touch each other at certain isolated points which are termed Dirac points. The existence

of Dirac points allows certain envelopes of the Bloch modes to propagate in an interesting

manner–an input spot becomes two expanding bright rings as the beam propagates in the

crystal. This phenomenon is called conical diffraction It was first predicted by W. Hamilton

in 1832 and observed by H. Lloyd in soon afterwards. Here a narrow beam entering a

crystal spreads into a hollow cone within the crystal. The existence of the conical diffraction

phenomenon in the light beam propagation in honeycomb lattices was demonstrated both

experimentally and numerically by Segev’s group. The theoretical explanation was given
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in our papers.We find that the envelope evolution is governed by a nonlinear Dirac system.

Below we discuss how to derive the nonlinear Dirac system.

We consider 2-D lattices with two periods, i.e. with two independent primitive lattice

vectors. We denote v1 and v2 as the two lattice vectors and the set of physical lattice vectors

with integer translations as P . We also denote k1 and k2 as the primitive reciprocal-lattice

vectors and G as the set of reciprocal lattice vectors. The unit cell of the physical lattice Ω is

the parallelogram with v1 and v2 as its two sides and the unit cell of the reciprocal lattice Ω′

is the parallelogram determined by k1 and k2. The relation between lattice and reciprocal

lattice is vm · kn = 2πδmn.

An HC lattice is composed of two standard triangular sublattices which we term the

A and B sublattices. The A lattice vectors form a triangular lattice. To generate the B

sublattice, additional information is needed to determine the shift from the B site to the A

site in the same unit cell. We denote this shift as a vector d1. A typical honeycomb lattice

is generated by taking v1 = l
(√

3
2
, 1
2

)
, v2 = l

(√
3
2
,−1

2

)
and d1 = −1

3
(v1 + v2). see e.g. Fig.

6. By connecting all the nearest neighbors, an HC lattice is obtained. It is noted that all A

sites form a triangular sublattice and all B sites form the other triangular sublattices.

A honeycomb lattice can be constructed from three plane waves, e.g.

V (r) = V0
∣∣eik0b1·r + eik0b2·r + eik0b3·r

∣∣2 (5)

where b1 = (0, 1), b2 = (−
√
3
2
,−1

2
) and b3 = (

√
3
2
,−1

2
); V0 > 0 is the lattice intensity; k0 is

the scaled wave length of the interfering plane waves. The minima of this potential form an

HC lattice; the characteristic vectors for this potential are

v1 = l

(√
3

2
,
1

2

)
, v2 = l

(√
3

2
,−1

2

)
,

k1 =
4π√

3l

(
1

2
,

√
3

2

)
, k2 =

4π√
3l

(
1

2
,−
√

3

2

)

where l = 4π
3k0

.
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Figure 6: (a) The hexagonal lattice; (b) The reciprocal lattice. Shadow regions are the unite

cell Ω and Brillouin zone Ω′. (c) The construction of the A and B sublattices; (d) The

dispersion surface.

We consider the lattice NLS equation (2) where σ is small. The above honeycomb lattice

potential given by (5) is prototypical.

We next discuss how to derive the dispersion relation and envelope equations the tight-

binding limit, i.e., V0 � 1. Physically, tight-binding limit means the potential well at each

site is very deep, and only on-site and nearest neighbor interactions need to be considered.

The potential can be written in the form

V (r) =
∑
v

(VA(r− v) + VB(r− v))

where VA, VB denote the potentials generated from the two sites in the primitive unit cell

and they have sharp minima near the A and B sites respectively. Here the sum over v means

v takes all values in P , i.e., v = mv1 + nv2, for integers m,n. The Bloch mode is taken to

be of the form

ϕ(r;k) = a
∑
v

φA(r− v)eik·v + b
∑
v

φB(r− v)eik·v (6)

where φA(r) and φB(r) represent an “orbital” (i.e., Wannier function) of a single VA or VB
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potential respectively. Due to the symmetry, VB(r) = VA(r − d1), so φB(r) = φA(r − d1)

and they have the same eigenvalue denoted as E; i.e.

(
∇2 − Vj(r)

)
φj(r) = −Eφj(r)

where j is A or B; Here we only consider the lowest band. We also assume φA and φB are

real and normalize them with norm 1, i.e.,
∫
φAφAdr =

∫
φBφBdr = 1.

Substituting the above Bloch mode ϕ(r;k) into the eigenproblem (4), multiplying by

φj(r) and integrating yields a matrix eigenvalue problem. The eigenvalue problem has

non-trivial solutions if and only if the determinant is zero which determines the dispersion

relation, which has the form

µ(k)− E =
c1 ∓ c2|γ(k)|
1∓ c0|γ(k)|

.

where cj, j = 1, 2, 3 are found in terms of integrals over the orbital and potential and

γ(k) = (1 + e−ik·v1 + e−ik·v2).

Note that γ(k) is periodic over k. In one reciprocal unit cell, there are two zeros of

γ(k), which we denote K and K ′. These are the Dirac points. For the potential (5), in the

primitive reciprocal unit cell Ω′ (see Fig. 6 (b)), K = 4π
3l

(
√
3
2
,−1

2
) and K ′ = 4π

3l
(
√
3
2
, 1
2
). All

the zeros of γ(k) form the reciprocal hexagonal lattice. At these points µ(k) has a multiple

root. Thus, a and b are free and the associated original linear Schrödinger eigenvalue problem

exhibits degeneracy. The upper dispersion surface and the lower dispersion surface touch

each other at the zeros of γ(k) (see Fig. 6 (d)); at the Dirac points, the eigenvalue problem

(4) has two independent Bloch modes.

Now suppose we input a Bloch wave envelope is input into the crystal. To the leading

order we assume the envelope varies slowly along z,

ψ ∼

(∑
v

av(Z)φA(r− v)eik·v +
∑
v

bv(Z)φB(r− v)eik·v

)
e−iµz. (7)
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Since ψ is not a Bloch mode anymore, the intensities are different at different sites, i.e., a

and b have subindex v. And Z = εz (small parameter ε will be determined later).

Substituting the envelope (7) into the lattice NLS equation, multiplying φj(r− p)e−ik·p

where p ∈ P ,and integrating we find

εi
dap
dZ

+ (µ− E − c1)ap + ((µ− E)c0 − c2)L1bp + σg|ap|2ap = 0

εi
dbp
dZ

+ (µ− E − c1)ap + ((µ− E)c0 − c2)L2ap + σg|bp|2bp = 0

where

L1bp = bp + bp−v1e
−ik·v1 + bp−v2e

−ik·v2 ,

L2ap = ap + ap+v1e
ik·v1 + ap+v2e

ik·v2 ,

and g =
∫
φ4
Adr =

∫
φ4
Bdr.

We are interested in the envelope of the Bloch mode near Dirac points, so we take for

example k near K. At this point, we find after rescaling,

i
dag
dZ
− L1bp + s(σ)|ap|2ap = 0; (8)

i
dbg
dZ
− L2ap + s(σ)|bp|2bp = 0; (9)

where we have taken |ε| ∼ O(c2) ∼ O(|σ|) to ensure maximal balance and s(σ) is the sign

of σ or zero if there is no nonlinearity. The above system (8)-(9) is the discrete nonlinear

Dirac system.

Next consider a further limit; assume the lattice constant l is much smaller than the

characteristic scale of the envelope ρ, i.e., l� ρ. Then after some calculation, L1 ≈
√
3l

2ρ
(∂X+

i∂Y ) and L2 ≈
√
3l

2ρ
(−∂X + i∂Y ). Here we use X and Y to measure the wide envelopes. Then

the discrete system becomes the following continuous system (after rescaling)

i
da

dZ
− (∂X − i∂Y )b+ s(σ)|a|2a = 0; (10)

i
db

dZ
− (−∂X − i∂Y )a+ s(σ)|b|2b = 0, (11)
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where we have taken |ε| ∼ O(c2
l
ρ
) ∼ O(|σ|) to ensure the maximal balance in the continuous

problem. Thus, we find the continuous nonlinear Dirac system which governs the envelopes

of Bloch modes propagating in the honeycomb lattice. If the envelope is not sufficiently

wide, e.g. no transverse slow modulation, the discrete system is required to describe the

envelope evolution. If the envelope is very wide, the continuous systems is sufficient.

Here we use the continuous Dirac system to describe typical conical diffraction. We

compare the numerical simulations of both lattice NLS equation and the nonlinear Dirac

system. The comparison is displayed in Fig. 7. is from the lattice NLS equation (2) with

initial conditions being a Bloch mode multiplied a wide Gaussian. Note that we can see

the background fine lattice structure. The bottom panel is from the nonlinear Dirac system

(10)-(11). Initially, a is a unit Gaussian and b is zero. From the top panel we see that a spot

becomes two rings which separated by a dark ring. The simulation of the nonlinear Dirac

system gives excellent correspondence.

 

 

(c)(b)(a)

(d) (e) (f)

Figure 7: The propagation of a Gaussian Bloch mode envelope associated with a Dirac point.

Top: simulations of the lattice NLS equation (2); Bottom: simulations of the nonlinear Dirac

Eqs.(10) and (11). Here only a envelope is displayed.

In recent work we have studied stronger nonlinear cases and have found that either the

above discrete Dirac system is needed or we must keep higher order terms in our asymptotic

analysis.
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Similarly we have studied a different case, one where the honeycomb potential is weak or

‘shallow’; i.e. δ ∼ |V | � 1. In this case we find the underlying dispersion relation has triple

degeneracy at leading order in δ and double degeneracy at higher orders. These degenerate

points correspond to the Dirac points in the shallow potential limit. Slowly varying envelope

equations were also obtained in various limits depending on the envelope scale as compared

with the size of nonlinearity. In these cases we find underlying Dirac type nonlinear envelope

systems.
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Dark Solitons

Dark solitons, namely envelope solitons having the form of density dips with a phase

jump across their density minimum, are fundamental nonlinear excitations which arise, for

example, in the defocusing nonlinear Schrödinger (NLS) equation. They are termed black

if the density minimum is zero or grey otherwise. The discovery of these structures, which

dates back to early 70’s, was followed by intensive study both in theory and in experiment: in

fact, the emergence of dark solitons on a modulationally stable background is a fundamental

phenomenon arising in diverse physical settings. Indeed, dark solitons have been observed

and studied in numerous contexts including: discrete mechanical systems electrical lattices,

magnetic films, plasmas, fluids, atomic Bose-Einstein condensates as well as nonlinear optics.

In nonlinear optics, dark solitons are predicted to have some advantages as compared to

their bright counterparts (which are supported by the focusing NLS model): dark solitons

can be generated by a thresholdless process, they are less affected by loss, and background

noise, they are more robust against Gordon-Haus jitter and higher order dispersion etc.

Recently, there has been an interest in “dark pulse lasers”, namely laser systems emit-

ting trains of dark solitons on top of the continuous wave (cw) emitted by the laser; various

experimental results have been reported utilizing fiber ring lasers, quantum dot diode lasers

and dual Brillouin fiber lasers. These works, apart from introducing a method for a sys-

tematic and controllable generation of dark solitons, can potentially lead to other important

applications related, e.g., with optical frequency combs, optical atomic clocks, and others.

An important aspect in these studies is the ability of the laser system to induce a fixed

phase relationship between the modes of the laser’s resonant cavity, i.e., to mode-lock; in

such a case, interference between the laser modes in the normal dispersion regime causes the

formation of a sequence of dark pulses on top of the stable cw background emitted by the

laser.
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We have studied dark solitons subject to general perturbations

iuz −
1

2
utt + |u|2u = F [u] (12)

where F � 1 and in mode-locked (ML) lasers. As a prototypical example, we considered

the perturbation theory within the framework of the PES equation (see earlier discussion)

in the normal regime. In this case using the PSE model, F [u] is expressed in the following

dimensionless form:

F [u] =
ig

1 + E/Esat

u+
iτ

1 + E/Esat

utt −
il

1 + P/Psat

u, (13)

In terms of optics applications, u(z, t) is the complex electric field envelope, z the direction

of propagation and t retarded time. We consider the boundary conditions |u(z, t)| → u∞(z)

as |t| → ∞. In the PES equation, P and E represent the power and energy of the system,

while Psat and Esat denote corresponding saturation values, respectively; g, τ , and l are

positive real constants, with the corresponding terms representing gain, spectral filtering

(both saturated with energy), and loss (saturated with power).

Our analysis shows that, in general, perturbations of dark solitons induce a small but

wide shelf. We can calculate the perturbation to the soliton parameters as well as the shelf.

Under certain perturbations, the Korteweg-deVries equation also exhibits shelf phenomena.

In a ring like laser system the PES model has rather pronounced shelf characteristics. In

Figure (8) below, a typical situation is depicted for a ring laser system described by the

PES equation. The shelf is seen to be prominent in the PES equation. No shelf exists in

the unperturbed NLS equation. In the inset of the figure the phase change across the dark

soliton is given for the PES model vs. the unperturbed NLS equation.
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Figure 8: The development of a shelf in the solution to the PES equation in a ring laser

configuration (solid line) as compared to the solution of the NLS equation (dashed line). The

shelf is evident in the amplitude. The inset shows how the phase changes across the soliton.
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Dispersive Shock Waves

Shock waves in compressible fluids is a classically important field in applied mathematics

and physics, whose origins date back to the work of Riemann. Such shock waves, which we

refer to as classical or viscous shock waves (VSW’s), are characterized by a localized steep

gradient in fluid properties across the shock front. Without viscosity one has a mathematical

discontinuity; when viscosity is added to the equations, the discontinuity is “regularized”

and the solution is smooth. An equation that models classical shock wave phenomena is the

Burgers equation

ut + uux = νuxx (14)

If ν = 0, we have the inviscid Burgers equation which admits wave breaking. When the

underlying characteristics cross a discontinuous solution, i.e. a shock wave, is introduced

which satisfies the Rankine-Hugoniot jump conditions which, in turn, determines the shock

speed. Analysis of Burgers equation shows that there is a smooth solution given by

u =
1

2
− 1

2
tanh{ 1

4ν
(x− 1

2
t)}

which tends to the shock solution as ν → 0. Thus the mathematical discontinuity is regu-

larized when viscosity ν is introduced.

Another type of shock wave is a so-called dispersive shock wave (DSW). Early obser-

vations of DSW’s were ion-acoustic waves in plasma physics. Subsequently, Gurevich and

Pitaevskii studied the small dispersion limit of the Korteweg-deVries (KdV) equation. They

obtained an analytical representation of a DSW. As opposed to a localized shock as in the

viscous problem, the description of a DSW is one with a sharp front with an expanding,

rapidly oscillating rear tail. The Korteweg-deVries (KdV) equation with small dispersion is

given by

ut + uux = ε2uxxx (15)
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where |ε| � 1 regularizes the discontinuity that otherwise would be present. The mathemat-

ical technique used to analyze DSW’s relies on wave averaging, often referred to as Whitham

theory. Whitham theory is used to construct equations for the parameters associated with

slowly varying wavetrains; it provides an analytical basis for DSW dynamics. For KdV the

Whitham equations can be transformed into Riemann-invariant form, which can be ana-

lyzed in detail. One finds that there are two speeds associated with a DSW: one is the speed

associated with the frontal wave which is a soliton (located at xs in the figure), and the

other speed corresponds to the group velocity of near linear trailing waves on the rear end

(depicted by xl in the figure) of the DSW. The picture and details are quite different from

viscous shock waves which, for example, occurs in Burgers equation; see Fig. 9 left, which

depicts a typical DSW associated with the KdV equation and a classical or viscous shock

wave (located at xc in the figure) associated with the Burgers equation. Interestingly, the

structure of the KdV DSW is strikingly similar to the original plasma observations.

   

x

x
l

x
c

x
s

0

U
0

2U
0

DSW

Classical

Figure 9: Left figure: typical DSW satisfying the KdV eq. (15) and a classical shock wave

satisfying Burgers eq. (14); right figure: typical blast wave–experiment; numerical simulation

is given below the experiment.

Recent experiments in Bose-Einstein condensates (BEC) and nonlinear optics have en-

hanced interest in DSW’s. The BEC experiments, originally performed in the Physics De-
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partment at the University of Colorado, motivated our studies. The dispersive blast wave

experiment and computational results are shown Fig. 9 – middle and right figures. Recent

experiments in nonlinear optics carried out in the laboratory of J. Fleischer at Princeton

University have also observed similar blast waves and other interesting DSW phenomena.

The governing equations we studied are a defocusing NLS equation with an additional

external potential. In BEC this equation is usually called the Gross-Pitaevski equation. Im-

portantly, a similar equation occurs in nonlinear optics. The equation is given in normalized

form as

iεΨt +
ε2

2
∇2Ψ− V (r, z, t)Ψ− |Ψ|2Ψ = 0 (16)

where V (r, z) contains details describing the cylindrically symmetric potential trap and ad-

ditional laser terms, Ψ is the wavefunction and ε2 is a small parameter related to the conden-

sate. Two different configurations were studied: the so-called “in-trap” and “out-of-trap”

cases. The BEC blast wave in the figure corresponds to a tightly focused laser beam im-

pinging on the BEC in a trapped or an expansion configuration. The laser beam creates a

dispersive blast wave in the radial direction.

Numerical simulations were found to agree extremely well with the experiments. In Fig.

9 (right figure), typical experimental and numerical results for a trapped configuration are

shown; the numerical image is a contour plot of
∫
|Ψ|2dz (darker is less dense).

Our initial analytical studies for the BEC were carried out on the 1-D semi-classical NLS

equation without the external potential since the experiments indicated that after some

propagation time the DSW’s were approximately 1-D in character and weakly influenced by

the potential. Our analytical approach to DSW’s uses Whitham averaging theory. Whitham

analysis associated with NLS equations in various contexts have been investigated by a

number of authors and in order to effectively compare the analysis with BEC experiment

and simulations, by ourselves.

Whitham averaging over the first four conservation laws of NLS, using a 1-phase traveling
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wave solution, leads to suitable parameters satisfying a system of hyperbolic PDE’s which can

be written in Riemann-invariant form. Solving the Riemann-invariant system corresponding

to step initial data, yields a description of an NLS DSW. The NLS DSW is a slowly modulated

wave train which varies from a large trailing wave which is well approximated by a moving

dark (grey) soliton, to a nearly linear wavetrain at the front moving with its group velocity;

like KdV the NLS DSW has two speeds. The 1-D NLS theory was also applied to the multi-

dimensional blast wave cases. The analytical results were very good; however due to radial

and potential effects there is a difference in phase and to a lessor degree in amplitude.

While interactions of viscous shock waves are well known, the situation associated with

interacting DSW’s is still at an early stage. Nevertheless have made some progress; research

is continuing in order to develop a broad and detailed understanding. We are investigating

DSW interactions in physically interesting systems by employing both Whitham methods

and asymptotic analysis applied to the solution obtained by the inverse scattering transform.

We note that in recent nonlinear optics experiments carried out in J. Fleischer’s laboratory,

interacting DSW’s were observed.

Dispersive shock waves are an interesting and developing area of research which we believe

will play an increasingly important role in nonlinear optics applications and other areas of

physics.
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